Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Infect Drug Resist ; 16: 843-852, 2023.
Article in English | MEDLINE | ID: covidwho-2230558

ABSTRACT

Background: Staphylococcus aureus (S. aureus) was able to rapidly evolve and adapt under the pressure of antibiotics, host immune and environmental change. After Corona Virus Disease 2019 (COVID-19) epidemic in Wuhan, China, a large number of disinfectants were used, which might result in rapid evolution of S. aureus. Methods: A total of 619 S. aureus isolates were collected from Zhongnan Hospital, Wuhan University from 2018 to 2021, including group BEFORE (309 strains collected before COVID-19 pandemic) and group AFTER (310 strains collected after COVID-19 pandemic), for comparing the changes of molecular epidemiology. The molecular characteristics of isolates were analyzed by Multi-locus sequence typing (MLST), spa, chromosomal cassette mec (SCCmec) typing, virulence genes were screened by the PCR, antibiotic susceptibility test was carried out by the VITEK system. Results: Thirty-six sequence types (STs) belonging to 14 clone complexes (CCs) were identified. ST5 was the most prevalent clone in both groups, and ST7, ranking the sixth in group BEFORE, became the second dominant clone in group AFTER (6.5% vs 10.0%), whereas ST239 decreased from the seventh to the fourteenth (5.8% vs 1.9%). ST7 in group AFTER had a higher positive rate of virulence genes, including hlb, fnbB, seb, lukDE, sdrE and the proportion of ST7-t091 MRSA strains increased from 19.1% to 50% compared with group BEFORE. Though no significant difference of MRSA proportion was found between two groups, SCCmec type-III in group AFTER decreased (p<0.01). Though the rate of multidrug-resistance (MDR) decreased, the virulence genes hlb, hlg, fnbB, seb and pvl carrying rates were significantly elevated in MRSA strains of group AFTER. Conclusion: After COVID-19 pandemic, ST7 becomes one of the predominant S. aureus clones in Wuhan and the carrying rate of SCCmec and virulence genes is on the rise. Therefore, it is essential to strengthen the surveillance of ST7 S. aureus clone.

2.
J Med Virol ; 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2234119

ABSTRACT

OBJECTIVE: The purpose of this study is to investigate the production of both SARS-CoV-2-specific antibodies and autoantibodies in serum following the third booster vaccination of the inactivated COVID-19 vaccine, and to study the effect of B cell subsets with CD27 and CD38 phenotypes in peripheral blood on antibody production. METHODS: Routine blood indexes, SARS-CoV-2 antibodies, platelet factor 4 and seven antiphospholipid antibodies were detected both before and 2 months after vaccination in the medical staff of the Zhongnan Hospital of Wuhan University. Peripheral blood B cell subtypes were detected prior to vaccination. RESULTS: Following immunization, the positive rate of anti-N-S1 IgG had increased from 24.8% to 91.3% and the average antibody concentration had increased by 11 times. The positive rate of NAb had increased from 24.8% to 91.3%, the average antibody concentration had increased by 12 times, and the primary increased anti-S1 IgG subtype was that of IgG1. Peripheral blood CD27+CD38+ B cells were positively correlated with antibody levels after vaccination and were a predictor of the antibody response. In addition, although some indicators showed slight absolute changes, the blood parameters and antiphospholipid antibodies of most volunteers were normal both before and after COVID-19 inactivated vaccine inoculation, and there was no statistical difference in abnormal rates either before or after inoculation. CONCLUSION: Antibodies in vivo were increased after vaccination with the inactivated vaccine, and IgG1 was the main subtype involved in response to the vaccine. Vaccination with the inactivated COVID-19 vaccine did not appear to affect thrombus-related autoantibodies. This article is protected by copyright. All rights reserved.

3.
Int Immunopharmacol ; 111: 109132, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2036146

ABSTRACT

Lymphopenia is a common observation in patients with COVID-19. To explore the cause of T cell lymphopenia in the disease, laboratory results of 64 hospitalized COVID-19 patients were retrospectively analyzed and six patients were randomly selected to trace their changes of T lymphocytes and plasma concentration of IL-6 for the course of disease. Results confirmed that the T-cell lymphopenia, especially CD4+ T cell reduction in COVID-19 patients, was a reliable indicator of severity and hospitalization in infected patients. And CD4+ T cell count below 200 cells/µL predicts critical illness in COVID-19 patients. In vitro assay supported that exposure to key contributors (IL-1ß, IL-6, TNF-α and IFN-γ) of COVID-19 cytokine storm caused substantial death of activated T cells. Among these contributors, IL-6 level was found to probably reversely correlate with T cell counts in patients. And IL-6 alone was potent to induce T cell reduction by gasderminE-mediated pyroptosis, inferring IL-6 took a part in affecting the function and status of T cells in COVID-19 patients. Intervention of IL-6 mediated T cell pryprotosis may effectively delay disease progression, maintain normal immune status at an early stage of infection.


Subject(s)
COVID-19 , Lymphopenia , Cell Death , Humans , Interleukin-6 , Retrospective Studies , SARS-CoV-2 , T-Lymphocytes
4.
J Clin Lab Anal ; 36(7): e24534, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1877610

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has now become a global pandemic owing to its high transmissibility. The SARS-CoV-2 nucleocapsid protein tests are playing an important role in screening and diagnosing patients with COVID-19, and studies about the utility of SARS-CoV-2 nucleocapsid protein tests are increasing now. METHODS: In this review, all the relevant original studies were assessed by searching in electronic databases including Scopus, Pubmed, Embase, and Web of Science. "SARS-CoV-2", "COVID-19", "nucleocapsid protein", and "antigen detection" were used as keywords. RESULTS: In this review, we summarized the utility of SARS-CoV-2 nucleocapsid protein in laboratory diagnosis. Among the representative researches, this review analyzed, the sensitivity of SARS-CoV-2 nucleocapsid protein detection varies from 13% to 87.9%, while the specificity could almost reach 100% in most studies. As a matter of fact, the sensitivity is around 50% and could be higher or lower due to the influential factors. CONCLUSION: It is well suggested that SARS-CoV-2 nucleocapsid protein is a convenient method with a short turnaround time of about half an hour, and the presence of N antigen is positively related to viral transmissibility, indicating that SARS-CoV-2 N protein immunoassays contribute to finding out those infected people rapidly and segregating them from the uninfected people.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Nucleocapsid , Sensitivity and Specificity
6.
Br J Anaesth ; 128(3): 491-500, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608752

ABSTRACT

BACKGROUND: There is a need to assess the long-term outcomes of survivors of critical illness from COVID-19. METHODS: Ninety-two survivors of critical illness from COVID-19 from four hospitals in Hubei Province, China participated in this prospective cohort study. Multiple characteristics, including lung function (lung volumes, diffusing capacity for carbon monoxide, chest computed tomography scores, and walking capacity); immune status (SARS-CoV-2-neutralising antibody and all subtypes of immunoglobulin (Ig) G against SARS-CoV-2, immune cells in response to ex vivo antigen peptide stimuli, and lymphocyte count and its subtypes); liver, coagulation, and kidney functions; quality of life; cognitive function; and mental status, were assessed after 3, 6, and 12 months of follow-up. RESULTS: Amongst the 92 enrolled survivors, 72 (78%) patients required mechanical ventilation. At 12 months, the predicted percentage diffusing capacity of lung for carbon monoxide was 82% (inter-quartile range [IQR]: 76-97%) with a residual volume of 77 (64-88)%. Other lung function parameters and the 6-min walk test improved gradually over time and were almost back to normal by 12 months. The titres of IgG and neutralising antibody to COVID-19 remained high at 12 months compared with those of controls who were not infected with COVID-19, although IgG titres decreased significantly from 34.0 (IQR: 23.8-74.3) to 15.0 (5.8-24.3) AU ml-1 (P<0.001), whereas neutralising antibodies decreased from 29.99 (IQR: 19.43-53.93) AU ml-1 at 6 months to 19.75 (13.1-29.8) AU ml-1 (P<0.001) at 12 months. In general, liver, kidney, physical, and mental functions also improved over time. CONCLUSIONS: Survivors of critical illness from COVID-19 show some persistent long-term impairments in lung function. However, a majority of these tests were normal by 12 months. These patients still had detectable levels of neutralising antibodies against SARS-CoV-2 and all types of IgG at 12 months, but the levels had declined over this time period. CLINICAL TRIAL REGISTRATION: None.


Subject(s)
Antibodies/blood , COVID-19/diagnosis , COVID-19/immunology , Survivors , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , China , Critical Illness , Cytokines/blood , Female , Humans , Kidney/physiopathology , Liver/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Male , Middle Aged , Prognosis , Prospective Studies , Quality of Life , Respiratory Function Tests , SARS-CoV-2/immunology , Tomography, X-Ray Computed , Walk Test
7.
BMC Infect Dis ; 22(1): 10, 2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1608186

ABSTRACT

BACKGROUND: Serosurveillance is crucial in estimating the range of SARS-CoV-2 infections, predicting the possibility of another wave, and deciding on a vaccination strategy. To understand the herd immunity after the COVID-19 pandemic, the seroprevalence was measured in 3062 individuals with or without COVID-19 from the clinic. METHODS: The levels of SARS-CoV-2 antibody IgM and IgG were measured by the immuno-colloidal gold method. A fusion fragment of nucleocapsid and spike protein was detected by a qualitative test kit with sensitivity (89%) and specificity (98%). RESULTS: The seroprevalence rate for IgM and IgG in all outpatients was 2.81% and 7.51%, respectively. The sex-related prevalence rate of IgG was significantly higher (P < 0.05) in women than men. The highest positive rate of IgM was observed in individuals < 20 years of age (3.57%), while the highest seroprevalence for IgG was observed in persons > 60 years of age (8.61%). Positive rates of IgM and IgG in the convalescent patients were 31.82% and 77.27%, respectively, which was significantly higher than individuals with suspected syndromes or individuals without any clinical signs (P < 0.01). Seroprevalence for IgG in medical staff was markedly higher than those in residents. No significant difference of seroprevalence was found among patients with different comorbidities (P > 0.05). CONCLUSIONS: The low positive rate of the SARS-CoV-2 IgM and nucleic acid (NA) test indicated that the SARS-CoV-2 outbreak is subsiding after 3 months, and the possibility of reintroduction of the virus from an unidentified natural reservoir is low. Seroprevalence provides information for humoral immunity and vaccine in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Communicable Disease Control , Female , Humans , Immunoglobulin G , Immunoglobulin M , Male , Pandemics , Seroepidemiologic Studies
8.
J Immunol Res ; 2021: 8669098, 2021.
Article in English | MEDLINE | ID: covidwho-1476888

ABSTRACT

OBJECTIVE: This study explored the consistency and differences in the immune cells and cytokines between patients with COVID-19 or cancer. We further analyzed the correlations between the acute inflammation and cancer-related immune disorder. METHODS: This retrospective study involved 167 COVID-19 patients and 218 cancer patients. COVID-19 and cancer were each further divided into two subgroups. Quantitative and qualitative variables were measured by one-way ANOVA and chi-square test, respectively. Herein, we carried out a correlation analysis between immune cells and cytokines and used receiver operating characteristic (ROC) curves to discover the optimal diagnostic index. RESULTS: COVID-19 and cancers were associated with lymphopenia and high levels of monocytes, neutrophils, IL-6, and IL-10. IL-2 was the optimal indicator to differentiate the two diseases. Compared with respiratory cancer patients, COVID-19 patients had lower levels of IL-2 and higher levels of CD3+CD4+ T cells and CD19+ B cells. In the subgroup analysis, IL-6 was the optimal differential diagnostic parameter that had the ability to identify if COVID-19 patients would be severely affected, and severe COVID-19 patients had lower levels of lymphocyte subsets (CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+T cells, and CD19+ B cells) and CD16+CD56+ NK cells and higher level of neutrophils. There were significant differences in the levels of CD3+CD4+ T cells and CD19+ B cells between T1-2 and T3-4 stages as well as IL-2 and CD19+ B cells between N0-1 and N2-3 stages while no significant differences between the metastatic and nonmetastatic cancer patients. Additionally, there were higher correlations between IL-2 and IL-4, TNF-α and IL-2, TNF-α and IL-4, TNF-α and IFN-γ, and CD16+CD56+NK cells and various subsets of T cells in COVID-19 patients. There was a higher correlation between CD3+CD4+ T cells and CD19+ B cells in cancer patients. CONCLUSION: Inflammation associated with COVID-19 or cancer had effects on patients' outcomes. Accompanied by changes in immune cells and cytokines, there were consistencies, differences, and satisfactory correlations between patients with COVID-19 and those with cancers.


Subject(s)
COVID-19/immunology , Cytokines/blood , Lymphopenia/blood , Monocytes/immunology , Neoplasms/immunology , Neutrophils/immunology , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , COVID-19/diagnosis , COVID-19/pathology , Female , Humans , Inflammation/blood , Inflammation/pathology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/pathology , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
9.
Signal Transduct Target Ther ; 6(1): 347, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1437669

ABSTRACT

SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape, compromising the effectiveness of existing vaccines and neutralizing antibodies. An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants. Here, we identified CD147 as a universal receptor for SARS-CoV-2 and its variants. Meanwhile, Meplazeumab, a humanized anti-CD147 antibody, could block cellular entry of SARS-CoV-2 and its variants-alpha, beta, gamma, and delta, with inhibition rates of 68.7, 75.7, 52.1, 52.1, and 62.3% at 60 µg/ml, respectively. Furthermore, humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants, alpha and beta. When infected, these mice developed exudative alveolar pneumonia, featured by immune responses involving alveoli-infiltrated macrophages, neutrophils, and lymphocytes and activation of IL-17 signaling pathway. Mechanistically, we proposed that severe COVID-19-related cytokine storm is induced by a "spike protein-CD147-CyPA signaling axis": Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway, which further induced expression of cyclophilin A (CyPA); CyPA reciprocally bound to CD147 and triggered MAPK pathway. Consequently, the MAPK pathway regulated the expression of cytokines and chemokines, which promoted the development of cytokine storm. Importantly, Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants. Therefore, our findings provided a new perspective for severe COVID-19-related pathogenesis. Furthermore, the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Basigin/antagonists & inhibitors , Basigin/metabolism , COVID-19 Drug Treatment , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Basigin/genetics , COVID-19/genetics , Chlorocebus aethiops , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/metabolism , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Vero Cells
12.
Signal Transduct Target Ther ; 6(1): 256, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1351932

ABSTRACT

We collected blood from coronavirus disease 2019 (COVID-19) convalescent individuals and investigated SARS-CoV-2-specific humoral and cellular immunity in these discharged patients. Follow-up analysis in a cohort of 171 patients at 4-11 months after the onset revealed high levels of IgG antibodies. A total of 78.1% (164/210) of the specimens tested positive for neutralizing antibody (NAb). SARS-CoV-2 antigen peptide pools-stimulated-IL-2 and -IFN-γ response can distinguish COVID-19 convalescent individuals from healthy donors. Interestingly, NAb survival was significantly affected by the antigen peptide pools-stimulated-IL-2 response, -IL-8 response, and -IFN-γ response. The antigen peptide pools-activated CD8+ T cell counts were correlated with NAb. The antigen peptide pools-activated natural killer (NK) cell counts in convalescent individuals were correlated with NAb and disease severity. Our data suggested that the development of NAb is associated with the activation of T cells and NK cells. Our work provides a basis for further analysis of the protective immunity to SARS-CoV-2 and for understanding the pathogenesis of COVID-19. It also has implications for the development of an effective vaccine for SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Adult , Aged , Aged, 80 and over , Convalescence , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/immunology , Lymphocyte Subsets/immunology , Male , Middle Aged , Young Adult
13.
Front Med (Lausanne) ; 8: 676560, 2021.
Article in English | MEDLINE | ID: covidwho-1337649

ABSTRACT

Objectives: COVID-19 emerged and rapidly spread throughout the world. Testing strategies focussing on patients with COVID-19 require assays that are high-throughput, low-risk of infection, and with small sample volumes. Antigen surveillance can be used to identify exposure to pathogens and measure acute infections. Methods: A total of 914 serum samples, collected from 309 currently infected COVID-19 patients, 48 recovered ones, and 410 non-COVID-19 patients, were used to measure N protein antigen levels by a chemilumineseent immunoassay. Diagnostic performances were analyzed in different periods after onset. Results: There was a high level of N protein antigen in COVID-19 patients (0.56 COI), comparing to the recovered patients (0.12 COI) and controls (0.19 COI). In receiver-operating characteristic curve analysis, the area under the curve of serum N protein antigen was 0.911 in the first week after onset. In this period, Sensitivity and specificity of serologic N protein antigen testing was 76.27 and 98.78%. Diagnosis performance of specific antibodies became better from the third week after onset. Subgroup analysis suggested that severe patients had higher levels of antigens than mild patients. Conclusions: High level of serum antigen suggested early infection and serious illness. Serum N protein antigen testing by chemiluminescence immunoassay is considered as a viable assay used to improve diagnostic sensitivity for current patients.

14.
Nano Lett ; 21(11): 4643-4653, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1303734

ABSTRACT

DNA quantification is important for biomedical research, but the routinely used techniques rely on nucleic acid amplification which have inherent issues like cross-contamination risk and quantification bias. Here, we report a CRISPR-Cas12a-based molecular diagnostic technique for amplification-free and absolute quantification of DNA at the single-molecule level. To achieve this, we first screened out the optimal reaction parameters for high-efficient Cas12a assay, yielding over 50-fold improvement in sensitivity compared with the reported Cas12a assays. We further leveraged the microdroplet-enabled confinement effect to perform an ultralocalized droplet Cas12a assay, obtaining excellent specificity and single-molecule sensitivity. Moreover, we demonstrated its versatility and quantification capability by direct counting of diverse virus's DNAs (African swine fever virus, Epstein-Barr virus, and Hepatitis B virus) from clinical serum samples with a wide range of viral titers. Given the flexible programmability of crRNA, we envision this amplification-free technique as a versatile and quantitative platform for molecular diagnosis.


Subject(s)
African Swine Fever Virus , Epstein-Barr Virus Infections , African Swine Fever Virus/genetics , Animals , CRISPR-Cas Systems , DNA/genetics , Herpesvirus 4, Human , Swine
15.
Clin Infect Dis ; 73(1): 68-75, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1292116

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and has the ability to damage multiple organs. However, information on serum SARS-CoV-2 nucleic acid (RNAemia) in patients affected by coronavirus disease 2019 (COVID-19) is limited. METHODS: Patients who were admitted to Zhongnan Hospital of Wuhan University with laboratory-confirmed COVID-19 were tested for SARS-COV-2 RNA in serum from 28 January 2020 to 9 February 2020. Demographic data, laboratory and radiological findings, comorbidities, and outcomes data were collected and analyzed. RESULTS: Eighty-five patients were included in the analysis. The viral load of throat swabs was significantly higher than of serum samples. The highest detection of SARS-CoV-2 RNA in serum samples was between 11 and 15 days after symptom onset. Analysis to compare patients with and without RNAemia provided evidence that computed tomography and some laboratory biomarkers (total protein, blood urea nitrogen, lactate dehydrogenase, hypersensitive troponin I, and D-dimer) were abnormal and that the extent of these abnormalities was generally higher in patients with RNAemia than in patients without RNAemia. Organ damage (respiratory failure, cardiac damage, renal damage, and coagulopathy) was more common in patients with RNAemia than in patients without RNAemia. Patients with vs without RNAemia had shorter durations from serum testing SARS-CoV-2 RNA. The mortality rate was higher among patients with vs without RNAemia. CONCLUSIONS: In this study, we provide evidence to support that SARS-CoV-2 may have an important role in multiple organ damage. Our evidence suggests that RNAemia has a significant association with higher risk of in-hospital mortality.


Subject(s)
COVID-19 , Nucleic Acids , Cohort Studies , Humans , RNA, Viral , SARS-CoV-2
16.
Biosens Bioelectron ; 183: 113206, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1171767

ABSTRACT

SARS-CoV-2 RNA is identified as a pivotal player to bolster energizing zones of COVID-19 detection. Herein, we develop a rapid and unamplified nanosensing platform for detection of SARS-CoV-2 RNA in human throat swab specimens. A gold nanoparticle (AuNP)-decorated graphene field-effect transistor (G-FET) sensor was fabricated, after which complementary phosphorodiamidate morpholino oligos (PMO) probe was immobilized on the AuNP surface. This sensor allowed for highly sensitive testing of SARS-CoV-2 RdRp as PMO does not have charges, leading to low background signal. Not only did the method present a low limit of detection in PBS (0.37 fM), throat swab (2.29 fM), and serum (3.99 fM), but also it achieved a rapid response to COVID-19 patients' samples within 2 min. The developed nanosensor was capable of analyzing RNA extracts from 30 real clinical samples. The results show that the sensor could differentiate the healthy people from infected people, which are in high agreement with RT-PCR results (Kappa index = 0.92). Furthermore, a well-defined distinction between SARS-CoV-2 RdRp and SARS-CoV RdRp was also made. Therefore, we believe that this work provides a satisfactory, attractive option for COVID-19 diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , COVID-19 Testing , Gold , Humans , Limit of Detection , Morpholinos , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity
17.
Cytokine ; 143: 155523, 2021 07.
Article in English | MEDLINE | ID: covidwho-1163610

ABSTRACT

Cytokines play pleiotropic, antagonistic, and collaborative in viral disease. The high morbidity and mortality of coronavirus disease 2019 (COVID-19) make it a significant threat to global public health. Elucidating its pathogenesis is essential to finding effective therapy. A retrospective study was conducted on 71 patients hospitalized with COVID-19. Data on cytokines, T lymphocytes, and other clinical and laboratory characteristics were collected from patients with variable disease severity. The effects of cytokines on the overall survival (OS) and event-free survival (EFS) of patients were analyzed. The critically severe and severe patients had higher infection indexes and significant multiple organ function abnormalities than the mild patients (P < 0.05). IL-6 and IL-10 were significantly higher in the critically severe patients than in the severe and mild patients (P < 0.05). IL-6 and IL-10 were closely associated with white blood cells, neutrophils, T lymphocyte subsets, D-D dimer, blood urea nitrogen, complement C1q, procalcitonin C-reactive protein. Moreover, the IL-6 and IL-10 levels were closely correlated to dyspnea and dizziness (P < 0.05). The patients with higher IL-10 levels had shorter OS than the group with lower levels (P < 0.05). The older patients with higher levels of single IL-6 or IL-10 tended to have shorter EFS (P < 0.05), while the patients who had more elevated IL-6 and IL-10 had shorter OS (P < 0.05). The Cox proportional hazard model revealed that IL-6 was the independent factor affecting EFS. IL-6 and IL-10 play crucial roles in COVID-19 prognosis.


Subject(s)
COVID-19/blood , COVID-19/pathology , Interleukin-10/blood , Interleukin-6/blood , T-Lymphocyte Subsets/immunology , Adult , Age Factors , Aged , Aging , Blood Coagulation Factors/analysis , COVID-19/mortality , COVID-19/therapy , Cytokine Release Syndrome/pathology , Female , Humans , Lymphocyte Count , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Survival Analysis , T-Lymphocyte Subsets/cytology , Thromboembolism/pathology , Treatment Outcome
18.
Radiol Cardiothorac Imaging ; 2(2): e200126, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-1155978

ABSTRACT

PURPOSE: To compare radiologic characteristics of coronavirus disease 2019 (COVID-19) pneumonia at thin-section CT on admission between patients with mild and severe disease. MATERIALS AND METHODS: Seventy patients with COVID-19 pneumonia who were admitted to Zhongnan Hospital of Wuhan University between January 20, 2020 and January 27, 2020 were enrolled. On the basis of the World Health Organization guidelines, 50 patients were categorized with the mild form and 20 with the severe form based on clinical conditions. Imaging features, clinical, and laboratory data were reviewed and compared. RESULTS: Patients with the severe form (median age, 65 years; interquartile range [IQR]: 54.75-75.00 years) were older than those with the mild form of disease (median age, 42.5 years; IQR: 32.75-58.50 years) (P < .001). Patients with the severe form of disease had more lung segments involved (median number of segments: 17.5 vs 7.5, P ≤ .001) and also larger opacities (median number of segments with opacities measuring 3 cm to less than 50% of the lung segment: 5.5 vs 2.0, P = .006; ≥ 50% of lung segment: 7.5 vs 0.0, P < .001). They also had more interlobular septal thickening (75% vs 28%, P < .001), higher prevalence of air bronchograms (70% vs 32%, P = .004), and pleural effusions (40% vs 14%, P = .017). CONCLUSION: Ground-glass opacities with or without consolidation in a peripheral and basilar predominant distribution were the most common findings in COVID-19 pneumonia. Patients with the severe form of the disease had more extensive opacification of the lung parenchyma than did patients with mild disease. Interlobular septal thickening, air bronchograms, and pleural effusions were also more prevalent in severe COVID-19.© RSNA, 2020.

19.
Front Microbiol ; 11: 603058, 2020.
Article in English | MEDLINE | ID: covidwho-1058427

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has now become a global pandemic due to its high transmissibility. The unavoidable shortcomings of traditional diagnostic assay, including nucleic acid testing, diverse serological assays characterized by high-throughput and less workload, are playing a more and more crucial role to supplement the nucleic acid test. In this review, we summarize the dynamic change of the specific IgM, IgG, and IgA antibodies against SARS-CoV-2 as well as neutralizing antibodies and discuss the clinical utility and limitations of the different serological assays. SARS-CoV-2, a newly discovered virus, shows some unique pathogenetic and epidemiological characteristics that have not been completely understood so far. Currently, studies about the antibody responses against SARS-CoV-2 and the clinical utility of serological testing are increasing. It's well suggested that the combination of serological tests and nucleic acid tests can cohesively improve the testing efficiency for identifying COVID-19 suspected patients.

20.
J Inflamm Res ; 13: 773-787, 2020.
Article in English | MEDLINE | ID: covidwho-1044351

ABSTRACT

PURPOSE: It is difficult to predict the prognosis of COVID-19 patients at the disease onset. This study was designed to add new biomarkers into conventional inflammatory panels to build an optimal combination panel, to better triage patients and predict their outcomes. PATIENTS AND METHODS: Biochemical parameters representing multi-organ functions, cytokines, acute-phase proteins, and other inflammatory markers were measured in COVID-19 patients on hospital admission. Receiver operating characteristic (ROC) curves, logistic regression, event-free survival (EFS), and Cox analyses were performed to screen and compare the predictive capabilities of the new panel in patients with different illness severity and outcome. RESULTS: This study included 120 patients with COVID-19, consisting of 32 critical, 28 severe, and 60 mild/moderate patients. Initial levels of the selected biomarkers showed a significant difference in the three groups, all of which influenced patient outcome and EFS to varying degrees. Cox proportional hazard model revealed that procalcitonin (PCT) and interleukin 10 (IL-10) were independent risk factors, while superoxide dismutase (SOD) was an independent protective factor influencing EFS. In discriminating the critical and mild patients, a panel combining PCT, IL-6, and neutrophil (NEUT) yielded the best diagnostic performance with an AUC of 0.99, the sensitivity of 90.60% and specificity of 100%. In distinguishing between severe and mild patients, SOD's AUC of 0.89 was higher than any other single biomarker. In differentiating the critical and severe patients, the combination of white blood cell count (WBC), PCT, IL-6, IL-10, and SOD achieved the highest AUC of 0.95 with a sensitivity of 75.00% and specificity of 100%. CONCLUSION: The optimal combination panel has a substantial potential to better triage COVID-19 patients on admission. Better triage of patients will benefit the rational use of medical resources.

SELECTION OF CITATIONS
SEARCH DETAIL